

The New Zealand Sustainability Dashboard
Online sustainability assessment and
reporting tools to achieve quality water
outcomes in a low regulation political
environment

Charles Merfield, Marion Sautier, Katharine Legun

Authors

Charles Merfield The BHU Future Farming Centre charles.merfield@bhu.org.nz

Lincoln

Canterbury

New Zealand.

Marion Sautier Centre for Sustainability Marion.sautier@toulouse.inra.fr

University of Otago

Dunedin

New Zealand

Katharine Legun Centre for Sustainability Ka

University of Otago

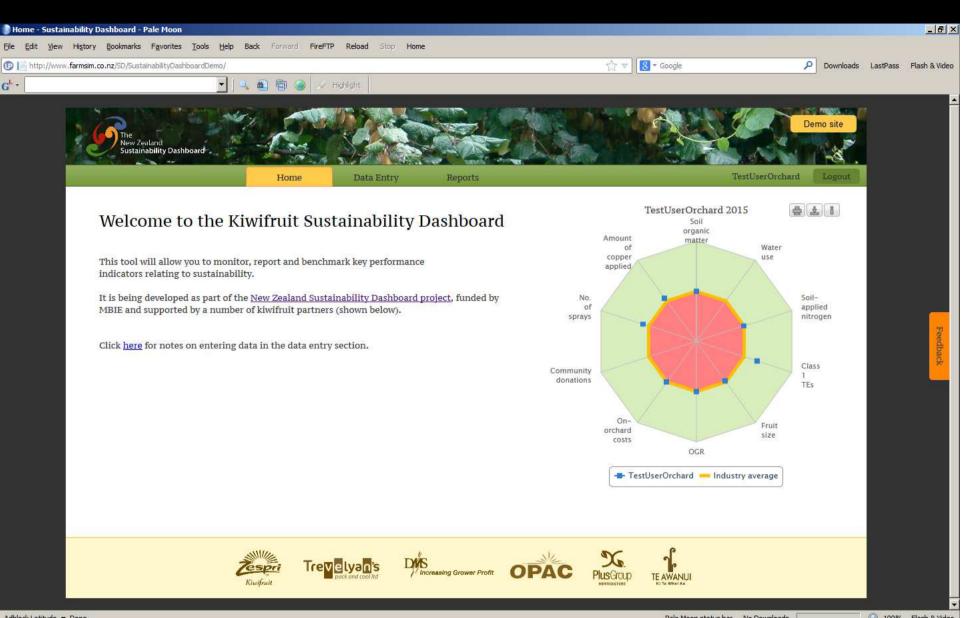
Dunedin

New Zealand

Katharine.legun@otago.ac.nz

NZ Sustainability Dashboard

- The New Zealand Sustainability Dashboard (NZSD) is a six year, NZ\$11 million / €6.5m, Government funded project
- The primary aim is to develop a sustainability assessment and reporting tool for the primary industries
- This is in the form of an online 'dashboard' for both data collection and presentation



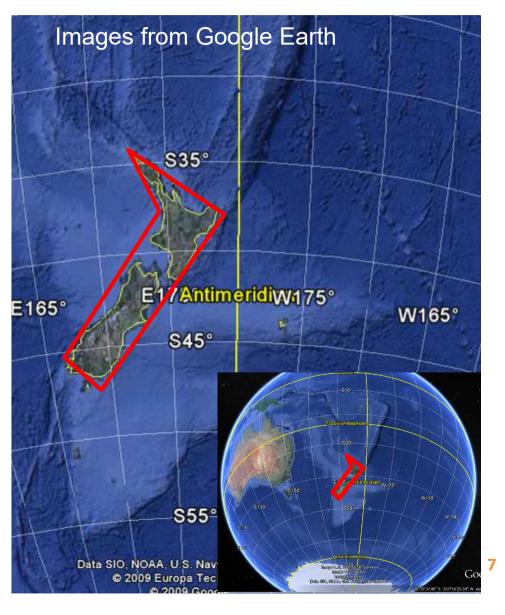
NZ Sustainability Dashboard

- Government funded project 6 years
- Primary industries
- Aim: develop a sustainability assessment and reporting tool at the farm scale
- Targeted tool: online 'dashboard' for both data collection and presentation
- NZ\$11 million / €6.5m

Adblock Latitude ▼ Done

Pale Moon status bar No Downloads

Q 100% Flash & Video


The Dashboard and Land & Water

- The Dashboard's function is to help producers and processors measure their sustainability footprint
- This can then help them reduce their environmental impacts, such as on land & water
- There are VERY few alternatives to achieve this in New Zealand

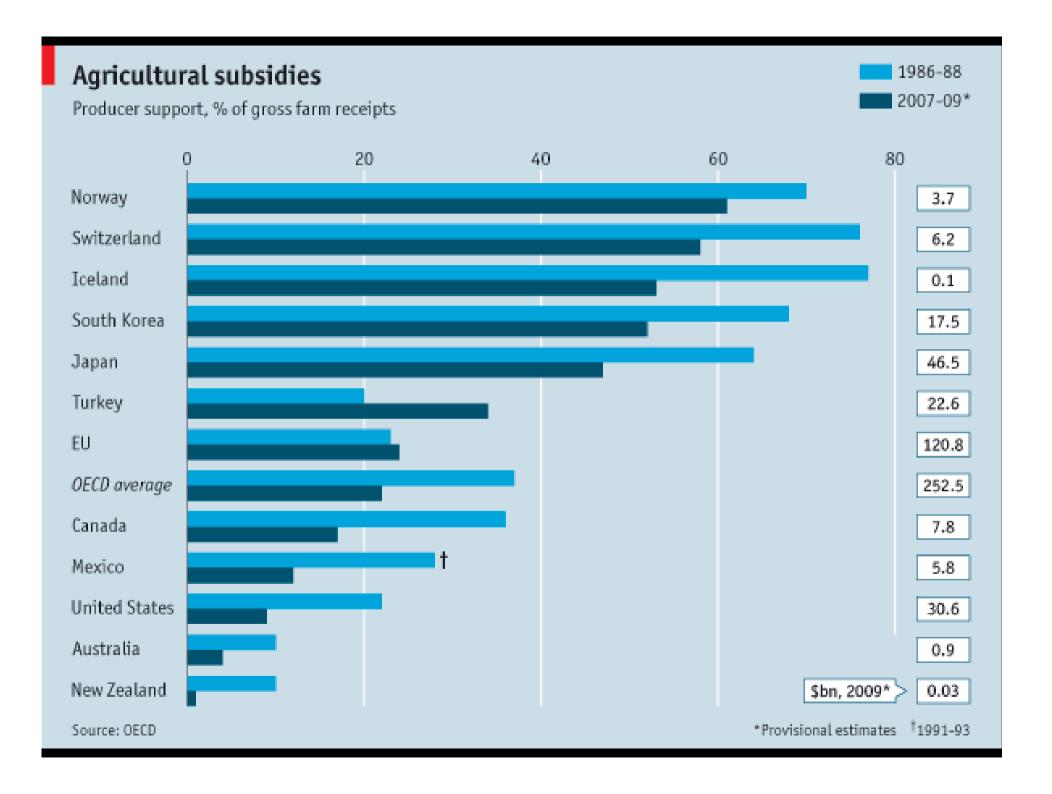
New Zealand - geography + climate

New Zealand - Agriculture

- 4.6 million people, 17 people / km²
- UK = 267, Netherlands = 500, Austria = 104
- NZ produces enough food for 30 million people
- Agriculture is ~6% of GDP
- Agriculture is ~55% of exports
- Nearly ZERO subsidies

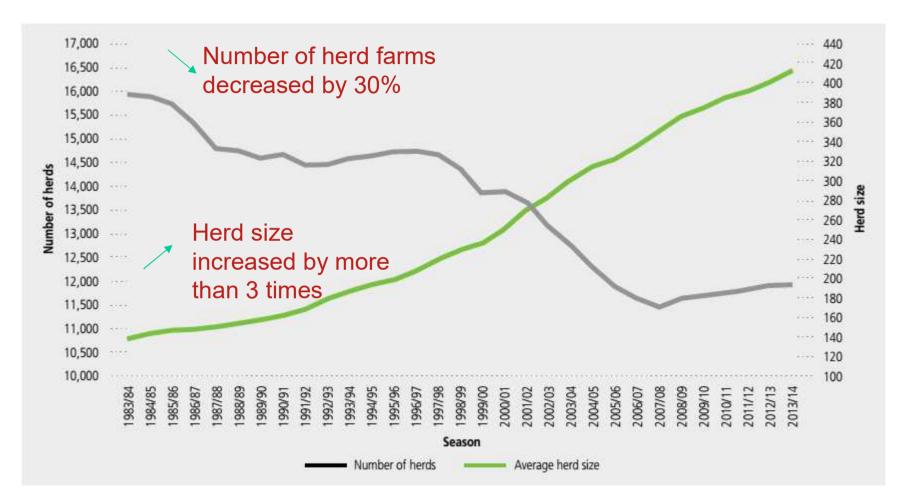
Advantages for water quality in NZ

- Low population density means there is a low overall impact on surface and ground water
- NZ is geologically young, with a wide range of soil types from strong clays to 'innert' pumice
- Where farming is possible it dominates the landscape
- There are therefore water bodies with significant eutrophication



Challenges for water quality in NZ

- Farm systems vary from low intensity, hill, dry stock to intensive lowland dairying e.g. ave 2.5 upto 4 cows/ha
- 95% of livestock diet is from grazed pasture greater potential for N&P loss to water
- Nearly ZERO regulations outside of std business law
- Nearly ZERO subsidies


NZ political landscape

- Highly deregulated economy since the mid 80s
- → Govt. has practically no role in controlling farming beyond general business law
- → No specific environmental control of farming activities
 until last three years
- → NZ cannot afford to subsidise its own exports
- Economically difficult to subsidise environmental protection - subsidizes exports

Effects of deregulation

Average herd size is 413, 28% of herds > 500 cows, 600 herds > 1,000 cows

Impacts on land and water

Novel environmental regulation

- Nutrient pollution of waterways become an issue in last 10 years
- NZ now has the problem the EU addressed in the 1980s
- In the last few years 'Regional' councils are starting to implement controls on farming
- NZ is taking a bottom up, decentralised approach compared with the EU's top down, centralised approach

EU <> NZ

- EU = top down regulation
 - Set by the EU
 - Nitrates directive stipulated max N applications
 - One size fits no one?
- NZ = bottom up regulation
 - Regional regulation
 - Community based water quality standards
 - Nutrient models determine farm-by-farm nutrient management within a catchment

EU

NZ

- Community regulations with specific arrangement at national and regional levels
 - Set by the EU
 - Rigid standards for EU territory:
 - Nitrates directive: stipulated max N applications (170 kgN/ha/yr)
 - Locally tuned directives:
 - Water Framework Directive: River
 Basin Management Plans
 developed for each catchment
 area through consultations with
 organisations and individuals.
 - → Reluctance from impacted stakeholders
 - → Process stimulated by EU supports and pressures

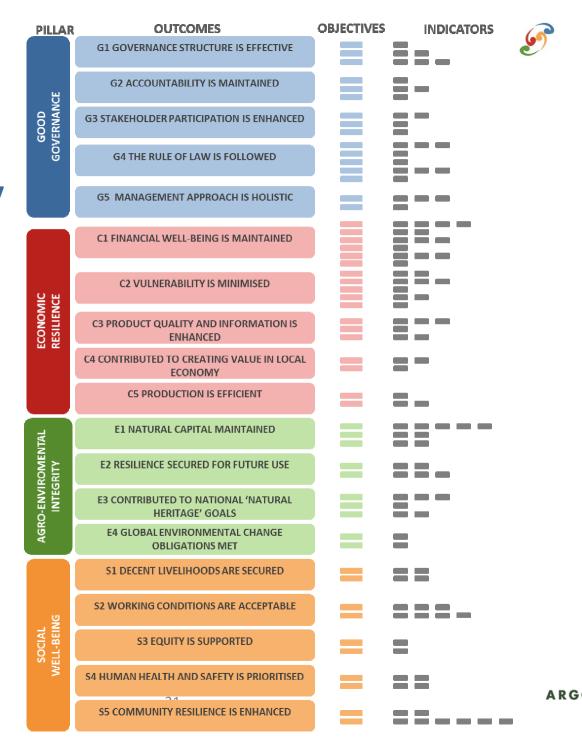
- Deregulated national basis with some regional regulation initiatives
 - Set by the volontary district (is district right?)
 - Water quality standards defined by local stakeholders (is it what you mean by community based?)
 - Individual nutrient farm management determined with nutrient cycle models
 - → Uncertainty of the process (will an agreement be reached?)
 - → High pace of change expected from spontaneous participation

Bottom up NZ regulation

- Land managers have to complete a 'Farm Environmental Plan' - lots of details
- Use 'OVERSEER'® www.overseer.org.nz to create field-by-field nutrient budget
- Result? Optimum farming & desired water quality
- Only 2 out of 15 councils have legislated so far
- Alternative the NZ Sustainability Dashboard

Using the Dashboard to create change

- NZ agriculture highly customer focused no subsidies - open market
- NZ Farmers are increasingly conscious of environmental issues
- The Dashboard is designed to allow farmers to measure and demonstrate their environmental performance to customers, regulators (NZ + overseas) and NZ society


Dashboard is based on SAFA

- SAFA is the FAO's Sustainability Assessment of Food and Agriculture Systems
- http://www.fao.org/nr/sustainability/sustainability-assessments-safa/en/
- Adapted for NZ specific issues
- Still based on four main Themes / Pillars

The NZSD sustainability assessment framework

Self-reflexive analysis of a NZ sustainability program

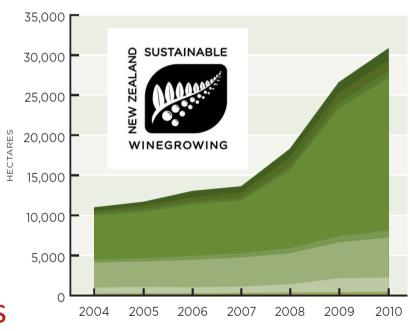
Aim

Identify success factors and barriers hindering sustainability program adoption

Case study
The 'Sustainable Winegrowing New Zealand' program

Method

21 interviews with NZ industry stakeholder and experts


Why studying Sustainable Winegrowing NZ?

- Use sustainability assessment and reporting tools
- Industry led sustainability program
- Partner of the NZSD
- Successful

94% of the winegrowing area certified 'sustainable'

- 20 years old
 - Memories still fresh
 - Different development phases

SWNZ VINEYARD AREA HA 2004-2010

Success factors

Started small then grew gradually

Fit time, material and intellectual resources with achievable goals

- Started with 5 growers
- Rethought the strategy when adoption stagnate
 - Reach the food chain level (e.g. winery)
 - Develop a market rationale (e.g. premium price, distinctive identity on a high competitive market)
 - Allow for different level of involvement
 - Sustainability accreditation as mandatory to access to markets

Success factors

- Multi faceted definition of sustainability
- External Audit
- Monitoring
- Offer tied service (here benchmarking)
- Dedicated staff for collecting and communicating scientific information, collecting feedback, answering questions, producing national and individual reports, auditing

Potential barriers

- Multi faceted definition of sustainability
- Diversity of members profiles
- Low usability of tools
- Low relevance of reporting

